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Abstract

Kraft pulp from kawayan kiling (Bambusa vulgaris Schrad ex. Wendl) were subjected to two 
separate pre-treatment procedures (namely, chemical and mechanical) prior to sulfuric acid 
hydrolysis for nanocellulose production. Experimental nanocellulose yields were 26.94% for 
the bleached and alkali pretreated pulp and 1.20% for the mechanically refined pulp. FTIR 
spectroscopy showed that the chemically pre-treated bamboo pulp yielded nanocellulose with 
no residual lignin while the ground, acid-hydrolyzed pulp retained some lignin. FIB-FESEM 
imaging showed that nanofibrils with average widths of 39.13 + 34.11 nm were formed as 
hydrolysis products from the friction grinder treated material while nanometer-sized crystals 
with average widths of 134.2 + 34.33 nm were produced from the chemically treated bamboo 
pulp. EDS analysis showed no impurities in the products from the chemical treatment, whereas 
the presence of silicon was detected in the mechanically refined pulp. Based on XRD analysis, 
the degree of crystallinity of the nanofibrils and crystals were 49.47% and 56.92%, respectively. 
In future works, B. vulgaris pulp that will be mechanically treated may require bleaching to 
further remove residual lignin and thus improve acid hydrolysis.

Keywords: methods of nanocellulose production, acid hydrolyzed production of nanocellulose, 
bamboo pulp bleaching and alkali digestion, friction grinder supermass colloider, nanofibrils
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Introduction

 Nanocelluloses have applications in 
nanocoats, bioimaging, biomedicine, gas barrier 
films and optically-transparent functional 
materials (Jiang & Hsieh, 2013). Nanocellulose 
can be obtained from plants especially from 
lignocellulosic-rich fibers found primarily in 
the stems and branches of trees and the culms 
of bamboos. Several plants have been explored 
for nanocellulose production like cotton stalks 
(Soni et al., 2015), grain straws (Oun & Rhim, 
2016), pineapple leaf fibers (Cherian et al., 

2010), corn stover (Costa et al., 2015), cacao pod 
husk (Hutomo et al., 2015), sugarcane bagasse 
(Wulandari et al., 2016), wood pulp (Thanh 
et al., 2019), and bamboo (Razal, 2016; Wang 
et al., 2015; Chitbanyong et al., 2018). In the 
Philippines, bamboos are a promising source of 
nanocellulose, as they are ubiquitous, easy to 
grow in almost all climate types, and have the 
ability to regenerate quickly when cut. 
 The common local varieties of bamboo used 
for pulping and nanocellulose production are 
the kawayan kiling (Bambusa vulgaris Schrad 
ex Wendl) and the kawayan tinik (Bambusa 
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blumeana J.A. & J.H. Schultes). Kawayan kiling 
culms contain a host of natural products with 
potential for commercial application (Fei et al., 
2016), and several studies were conducted to 
determine the suitability of this for pulp and 
paper (Ameh et al., 2017; Sekyere, 1994; Escolano 
and Semana, 1970). Altenatively, Bayani et 
al. (2016) tested the use of acid-hydrolyzed 
cellulose nanowhiskers from kawayan tinik as 
reinforcement for xylan films. Villegas (2015) also 
attempted to incorporate cellulose nanowhiskers 
from kawayan tinik as a reinforcement in 
thermoplastic starch. Meanwhile, Jara (2019) 
used newly emerging bamboo shoots of B. vulgaris 
as feedstock for nanocellulose production without 
prior pulping, capitalizing on the low lignin 
content of young bamboo shoots.
 Several preparatory steps such as pulping 
and removal of residual lignin are employed 
to separate cellulose from the lignocellulosic 
matrix. However, these methods commonly use 
chlorine containing compounds that could cause 
instability and irregularities in the properties 
of the nanocrystals produced (Dufresne, 2018). 
Moreover, the many steps required could affect 
production cost and energy requirement, and 
likewise have environmental impact. To address 
these problems, it would be helpful to search for 
methods of producing nanocellulose that can 
overcome the disadvantages and limitations of 
production processes that are highly dependent 
on the use of chemicals. 
 Acid hydrolysis is by far the most common 
method of producing nanocellulose from 
lignocellulosic materials, with either sulfuric 
acid (Mascheroni et al., 2016; Zhang et al., 2020) 
or hydrochloric acid (Hastuti et al., 2018), or both 
(Yu et al., 2013; Hutomo et al., 2015) serving 
as the inorganic catalyst to break down the 
isolated cellulose. Other reagents and methods 
tested are ammonium persulfate reaction 
(Mascheroni et al., 2016; Zhang et al., 2020), 
TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl 
radical) oxidation (Isogai et al., 2011), and FeCl3-
catalyzed hydrolysis assisted by ultrasonication 
(Lu et al., 2014). 
 This study aims to find a method of 
preparing nanocellulose from kawayan kiling 
that minimizes the issues attendant to the use 
of chemicals in pretreatment procedures prior 
to acid hydrolysis of cellulose. Towards this, the 

study will explore on two methods of pretreating 
the Kraft bamboo pulp prior to acid hydrolysis. 
The first will be an all-chemical sequence 
involving bleaching and alkali digestion while the 
second will dispense of the chemical treatments 
in favor of mechanical disintegration by multiple 
passes of the pulp in a friction grinder supermass 
colloider. The nanocellulose resulting from the 
two different pretreatment methods will then be 
analyzed and compared.

Materials & Methods

Materials

 The kawayan kiling culms were obtained 
from the Makiling Forest Reserve, University of 
the Philippines Los Baños (UPLB). All reagent-
grade chemicals were purchased from commercial 
sources and were used without further purification 
unless noted. The apparatus and equipment 
used in nanocellulose isolation are located at 
the Wood Chemistry Laboratory, Department 
of Forest Products and Paper Science, College of 
Forestry and Natural Resources, University of 
the Philippines Los Baños and the Institute of 
Chemistry, College of Arts and Sciences, UPLB.

Sample Preparation

 Preparation of bamboo culms for pulping was 
done in accordance with the procedure reported 
by Razal (2016). Bamboo culms were examined 
for blemishes or damage and those found to be 
defective were discarded. The selected culm was 
cut into 1 to 1.5-inch rings, leaving out portions 
that contain the nodes. The bamboo skin was 
removed and then the bamboo rings were further 
subdivided into chunks using a utility cutter. 
The bamboo chunks were air-dried for three 
days and were made to pass through a Pallmann 
PHM3 Model 10180015 (Germany) hammermill 
for further breakdown.

Kraft Pulping

 Weighed amounts of NaOH and Na2S were 
sequentially dissolved in a predetermined volume 
of water and added to hammermilled bamboo 
chips in a large glass container. The quantity of 
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pulping chemicals used, and the water volume 
were based on calculations that provided 25% 
sulfidity, 13% effective alkali, and a liquor to 
bamboo chip ratio (ovendry basis) of 10:1,

where: Equation 1

and Equation 2

 and NaOH and Na2S are the weights (g) 
of sodium sulfide and sodium

 hydroxide, respectively, expressed as 
Na2O (Bajpai, 2018).

 The improvised pulping digester that was 
assembled for the pulping of the bamboo chips 
consisted of a large glass vessel, a pressure cooker, 
and burner. The glass vessel containing the chips 
and “liquor” was covered with cheesecloth and 
placed inside the pressure cooker partially filled 
with distilled water, then sealed. It was heated 
up to a temperature of 121oC and 15 psi pressure, 
which was then maintained for an additional 
2 hours. The pressure was released, and the 
cooked bamboo pulp was placed over cheesecloth 
and thoroughly washed with tap water with 
squeezing. The resulting pulp was then further 
disintegrated using an Oster (U.S.A.) commercial 
blender Model 4172 for at least 15 seconds. 

Chemical Treatment 

1. Bleaching and Holocellulose Preparation

 Two-stage bleaching following the procedure 
of (Villegas, 2015) was employed using 0.5% (w/v) 
hypochlorite solution (3% consistency [dry mass to 
total solution], 70 oC, 30 min) followed by soaking 
in 5% (v/v) H2O2 solution (3% consistency, 70 oC, 
120 min). The bleached pulp was washed several 
times with water under vacuum filtration to 
remove excess bleaching chemicals. Holocellulose 
was prepared from bleached pulp by acid chlorite 
delignification (Erickson, 1962). Solution A (60 
mL CH3COOH and 1.3 g NaOH in 1 L H2O) was 
added to the bleached pulp in a flask at a ratio of 
2 g pulp per 30 mL solution A. The flasks were 
placed in a water-filled metal pan mounted on 
a hot plate and heated to a temperature of 75oC 
monitored with a thermometer. Then, 3 mL of 20% 
sodium chlorite (NaClO2) solution was placed in 

the flask with subsequent addition (3 mL each) of 
the NaClO2 solution after 0.5, 1.0, 1.75, and 2.5 
hr., with swirling after every addition. After 3.25 
hr., the mixture was suction-filtered and washed 
with portions of chilled distilled water, four 75-
mL quantities of 1% CH3COOH and two 30-mL 
quantities of methanol.

2. Alkali-insoluble Cellulose Preparation

 Cellulose was prepared from the holocellulose 
fraction following the modified TAPPI procedure 
for alpha-cellulose determination (TAPPI 
Test Method 203 cm-09, 2009). To the bamboo 
holocellulose (3 g oven-dry weight) preparation 
in a flask, 60 mL of 17.5% NaOH solution was 
added and heated at 20oC in a water bath for 30 
min. The alkali-treated holocellulose was then 
suction-filtered and sequentially washed with 
750 mL distilled water, 10% CH3COOH (with 
prior soaking for 5 min), and 250 mL distilled 
water until the pH of the filtrate was neutral.

Mechanical Treatment

 The Kraft pulp (without prior bleaching) was 
subjected to mechanical refining using a friction 
grinder supermass colloider Model MKCA6-2 
(Masuko Sangyo Co. Ltd, Japan) for 15 passes at 
1500 rpm. The grinder clearance was gradually 
decreased from -1 during the first pass, until 
the setting reached -10 in the 15th pass. After 
every pass, grinding was discontinued, and the 
grinder housing was opened. This was done to 
recover the residues stuck around the periphery 
of the grinding stones by washing with water. 
However, pulp retained on the outer surfaces 
of the grinding stones was discarded. This step 
was done to ensure that for the experiment, 
there was homogeneity in the ground pulp 
recovered from the colloider. By removing the 
pulp that were stuck outside the grinding discs 
and collecting only the pulp that was uniformly 
pressed between the discs, the experiment had 
minimized the variability in the pulp recovered 
for subsequent tests. However, this would result 
in low yield recovery from this experimental 
procedure. The opening of the grinder housing to 
recover undrained pulp was repeated for every 
pass until there were no observable differences 
between the pulp in and outside the grinding 
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stones. After 15 passes, 500 mL of the ground 
pulp suspension was obtained.

Acid Hydrolysis 

 In a two-neck round bottom flask, 1 g of 
air-dried alkali-insoluble cellulose was added, 
followed by 50 mL of 46% v/v sulfuric acid (Jara, 
2019; Villegas, 2015). The flask was placed in 
a water bath on a hot plate and was constantly 
stirred with a magnetic stirrer. The reaction 
was carried out for 30 min while maintaining 
the water bath temperature at 45oC. After 30 
min, 500 mL of cold distilled water was added 
to the mixture and subsequently neutralized 
using 10% NaOH. The mixture was transferred 
to a separatory funnel and allowed to settle 
until a distinct boundary between two layers 
was observed, where one layer contained the 
hydrolysis products. The acid-hydrolyzed 
cellulose produced from the chemically treated 
kawayan kiling pulp settled at the bottom layer 
and was subsequently separated by draining 
from the funnel.
 For the colloider-treated pulps in water 
suspension, the water content was reduced in a 
Stuart RE301P rotary evaporator (Cole Parmer 
Ltd., USA). A portion of the thick suspension 
containing approximately 1 g of oven dried 
ground pulp was taken, and then concentrated 
H2SO4 was added to bring to a final concentration 
of 46% (v/v). The same conditions employed 
for the acid hydrolysis of the alkali insoluble 
cellulose and the recovery of the acid-hydrolyzed 
cellulose were followed for the colloider-treated 
Kraft pulp.
 The solution containing the hydrolysis 
products was transferred in falcon tubes and 
was washed repeatedly with distilled water and 
centrifuged at 5oC and 9500 rpm for 10 min using 
Allegra X-22R centrifuge (Beckman Coulter Inc., 
USA). The pellets were combined and dialyzed, 
with stirring, using a dialysis tubing cellulose 
membrane (16 mm diameter, 14,000 molecular 
weight cut off) for 24 hr. Following dialysis, the 
samples were homogenized using Cole Palmer® 
ultrasonic cleaner Model 08895-20 at 50-60 Hz 
for 30 min. The yield of the resulting products 
(for both the alkali-insoluble cellulose and 
ground Kraft pulp) was determined and a portion 
of the product was freeze-dried for various 

characterization tests.

Characterization Tests

1. Focused Ion Beam - Field Emission Scanning 
Electron Microscopy (FIB-FESEM)

 A drop of suspension containing the bamboo 
nanocellulose product was casted and spread on 
the surface of aluminum foil. The casted samples 
were dried in a covered glass petri dish with 
desiccant under dark condition before analysis 
using a Dual Beam Helios Nanolab 600i (Field 
Electron and Ion Company, OR, USA). The 
analysis was performed using an accelerated 
voltage of 2.0 kV (SE/TLD) and a beam current 
of 86 pA (SE/TLD). Data processing of the 
images was done through an image processing 
software using the Dual Beam Helios Nanolab 
660i xT Microscope Server. The measurement of 
the widths of the nanocellulose was done using 
ImageJ software.

2. Energy Dispersive Spectroscopy (EDS)

 This analysis was performed alongside FIB-
FESEM imaging to determine the elemental 
composition of the sample. Both methods used 
the same equipment, with the EDS analysis being 
conducted using an accelerated voltage of 15.0 kV 
and a beam current of 0.69 nA. Data processing 
and elemental composition determination were 
done using the imaging software Oxford EDS 
AZtecEnergy.

3. Fourier Transform Infrared (FTIR) 
Spectroscopy

 The FTIR spectra of freeze-dried samples of 
kawayan kiling nanocellulose products Pin KBr 
pellets (1:20 w/w) were obtained using a Nicolet 
6700 FT-IR spectrometer (Thermo Scientific, 
Waltham, MA, USA). The spectra were collected 
at ambient conditions in transmittance mode, 
from an accumulation of 16 scans at a 4 cm-1 
resolution over the region of 4000-400 cm-1.

4. Dynamic Light Scattering (DLS) 

 The Z-average (d.nm) and polydispersity 
indices (PdI) of the samples in pure water 
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were measured with Malvern® ZS90 Zetasizer 
(Malvern Panalytical Ltd, Worcestershire, UK). 
Suspensions of 0.01 wt. % concentration were 
previously homogenized using CP EW-08895-20 
ultrasonicator (Cole-Parmer, Ltd. USA) for 5 min 
before analysis.

5. X-ray Diffraction (XRD) Analysis 

 The X-ray diffraction spectra of the Kawayan 
kiling nanocellulose products were measured 
in a Shimadzu Lab-X XRD-6000 diffractometer 
(Shimadzu, Columbia, MD, US) using a Ni-
filtered Cu Kα radiation (λ = 1.54050 A˚) at 
an anode voltage of 40 kV and a current of 30 
mA. Freeze-dried samples were compressed in 
a sample holder. Diffractograms were recorded 
from 10◦ to 80◦ at a scan rate of 2.00◦/min. 
Crystallinity index (CrI) was calculated using 
Equation 3 (Segal et al., 1959).

 Equation 3

where Iam is the intensity of diffraction of the 
amorphous region at 2θ angle and I002 is the 
maximum intensity of the 002-lattice diffraction 
peak at 2θ.

Results and Discussion

Yield determination

 The overall yield obtained from the chemically 
treated cellulose (i.e., bleached followed by alkali 
treatment) was 26.94% while for the pulp that 
was submitted to grinding in a refiner, the yield 
was only 1.20%. The low yield from the latter was 
largely due to the removal of unground material 
for every pass during the mechanical refining 
(16.1% yield). This was designed to ensure that 
only pulp that was uniformly ground was collected 
for further treatment and analysis. This ensured 
homogeneity of the ground material subjected 
to the property tests and this need not be the 
procedure in actual production. In comparison, 
Jara et al. (2020) found the acid hydrolyzed 
yield of cellulose nanocrystals from kawayan 
kiling shoots to be 9.16%; other studies reported 
yields from the hydrolysis or oxidation reactions 

to produce the nanocellulose. In our study, the 
yields of nanocellulose from acid hydrolysis were 
61.76% and 11.24% from the solely chemically 
treated material and the mechanically treated 
pulp preparation, respectively.

 The lower yield from the mechanically 
treated pulp can be attributed to the non-
accessibility of the ground cellulose to the acid. 
Even after 15 passes through the colloider, the 
cellulose may not have been fully liberated from 
the hemicelluloses and lignin to allow the acid 
to penetrate the non-cellulosic matrices to reach 
the cellulose and break it down. This is evident 
in the observed color of the ground cellulose 
and the peaks obtained in the FTIR spectra 
corresponding to functional groups found in 
lignin, which suggests the presence of residual 
lignin in the preparation. 

Nanocellulose particle size

 Using dynamic light scattering, the 
Z-averages and polydispersity indices (PdI) of 
the nanocellulose products were determined to 
estimate the size of the particles. It can be seen 
in Table 1 that on average, the dimensions of the 
samples appear to exceed 100 nm. Most of the 
mechanically prepared nanocellulose appeared 
to be fibrillar which could be explained by the 
incomplete acid hydrolysis reaction. Refining 
could not  fully release the  cellulose from the 
associated  lignin and hemicelluloses. Based 
on the PdI values, the samples were broadly 
polydisperse. 
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Table 1. Z-average and polydispersity index of 
acid-hydrolyzed nanocellulose products from the 
chemically and mechanically pretreated bamboo 
acid hydrolysis feedstock. 

Pretreatment 
of the Bamboo 
Acid Hydroly-
sis Feedstock 

Z-average 
(d.nm)*

Polydisper-
sity Index* 

Combined 
bleaching and 

alkali digestion

176.8 ± 7.5 0.501 ± 0.067

Refining with 
friction grinder 
supermass col-
loider

389.5 ± 74.7 0.561 ± 0.169

* Values are mean ± s.d. of 5 measurements.

Nanocellulose morphologies and elemental 
composition

 Figure 1 shows the images of the nanocellulose 
products from the acid-hydrolysis of differently 
treated Kawayan kiling pulp. It was observed 
that the products from the combined bleaching 
and alkali digestion gave crystal-like structures 
which were aggregated, while those that 
underwent grinding were fibrillar in nature. The 
aggregation could be due to hydrogen bonding 
of the hydroxyl groups of cellulose as water was 
removed during drying prior to microscopy. This 
partially accounts for the broader widths (134.20 
± 34.33 nm) of the nanocrystals from the cellulose 
that was subjected to combined bleaching and 
alkali digestion as compared with that of the 
mechanically refined (39.13 ± 34.11 nm) product. 
In the latter, mechanical fibrillation greatly 
contributed to shearing the microfibrils but did 
not remove the lignin.
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hydroxyl groups of cellulose as water was removed during drying prior to microscopy. This 283 
partially accounts for the broader widths (134.20 ± 34.33 nm) of the nanocrystals from the 284 
cellulose that was subjected to combined bleaching and alkali digestion as compared with that of 285 
the mechanically refined (39.13 ± 34.11 nm) product. In the latter, mechanical fibrillation greatly 286 
contributed to shearing the microfibrils but did not remove the lignin. 287 
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Table 3. Elemental analysis by EDS analysis 
of acid hydrolysis products from variously 
pretreated kawayan kiling (Bambusa vulgaris 
Schrad.) pulp.

Pretreat-
ment of the  

bamboo acid 
hydrolysis 
feedstock 

% C % O % Si

Combined 
bleaching and 

alkali digestion
23.93 77.07 -

Refining with 
friction grinder 

supermass 
colloider

31.73 62.87 5.40

 Elemental analysis (Table 3) showed that 
both nanocellulose products contained carbon 
and oxygen; however, the nanofibrils contained 
a significant amount of silicon. This could be 
attributed to the mechanical grinding process. It 
can be inferred that in the refining process, small 
fragments of the grinder stone, which is mainly 
composed of silicon carbide (SiC), could have 
been chipped away and mixed with the sample. 

Chemical and crystalline structures of 
nanocellulose

 Freeze-dried nanocellulose suspensions from 
the chemically treated kawayan kiling pulp 
produced white solids while the mechanically 
treated kawayan kiling pulp gave brownish flaky 
solids. As seen in Figure 2, both samples showed 
the same characteristic peaks for cellulose, such 
as the O-H vibration at 3413.29 cm-1 and 3439.93 
cm-1 (Costa et al., 2015; Liu et al., 2016), C-O 
stretching vibration at 1063.67 cm-1 and 1064.92 
cm-1, aliphatic C-H bonds at around 2920.12 cm-1 
and 2898.87 cm-1, C-O-C stretching vibration of 
the pyranose ring at around 1064.36 cm-1 and 
1063.67 cm-1 (Liu et al., 2016). Furthermore, 
the presence of the cellulose backbone was also 
confirmed by the peaks at 1645.54 cm-1 and 
1633.55 cm-1 due to the O-H bending of the 
absorbed water and the peaks at 898.86 cm-1 and 
896.92 cm-1 in the anomeric region which are 
attributed to the linkages between sugar units in 
cellulose (Jiang & Hsieh, 2013; Liu et al., 2016)
 One notable FTIR peak for the hydrolysis 
product from the refined pulp is at 1727.47 cm-1 
which is associated with acetyl ester groups and 
uronic groups of hemicelluloses or ester bond of 
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carboxyl group of ferulic and p-coumaric acid of 
lignin and/or hemicellulose. This was not seen 
in the hydrolysis products of the bamboo pulp 
that was bleached and alkali digested. This 
indicates that residual hemicelluloses and/or 
lignin remained in the hydrolysis products from 
the friction grinder supermass colloider treated 
pulp; the absence of peaks associated with lignin 
in the chemically pretreated pulp suggests that 
the binding substance lignin, was completely 

removed from the chemically pretreated bamboo 
pulp.
 The XRD spectra are shown in Figure 3. 
Based on the peak height calculation using 
Segal’s (1959) method, the crystallinity indices 
(CrI) of the chemically and mechanically treated 
kawayan kiling pulps are 56.92% and 49.47%, 
respectively. The lower crystallinity of the 
nanocellulose from the mechanically treated 
pulp could be due to the presence of amorphous 

10 
 

pretreated pulp suggests that the binding substance lignin, was completely removed from the 338 
chemically pretreated bamboo pulp. 339 

 340 
The XRD spectra are shown in Figure 3. Based on the peak height calculation using Segal’s (1959) 341 
method, the crystallinity indices (CrI) of the chemically and mechanically treated kawayan kiling 342 
pulps are 56.92% and 49.47%, respectively. The lower crystallinity of the nanocellulose from the 343 
mechanically treated pulp could be due to the presence of amorphous residual lignin. In 344 
comparison, cellulose nanocrystals prepared by sulfuric acid hydrolysis of commercial bamboo 345 
pulp had a 71.98% crystallinity (Yu et al. 2012) while a recent study reported a 68.53% 346 
crystallinity for nanocellulose extracted from isolated bamboo parenchyma using deep eutectic 347 
solvent (Gu et al. 2021).   348 
 349 

 350 

 351 
 352 

I002 

Iam 

a 

23 o 21 o 18 o 

2 theta (2θ, o) 

In
te

ns
ity

 (a
.u

.)  

11 
 

 353 
 354 

Fig 3. X-ray diffraction spectra of Bambusa vulgaris nanocellulose products from (a) 355 
combined bleaching and alkali digestion and (b) pulp subjected to grinding in a friction 356 
grinder supermass colloider.  357 

 358 
 359 
Conclusion 360 
 361 
The study compared the nanocellulose from the kraft pulp derived from kawayan kiling culms 362 
subjected to two different pretreatment methods. FIB-FESEM analysis showed crystal-like 363 
structures of chemically treated acid-hydrolyzed nanocellulose while for the mechanically treated 364 
pulp, a fibrillar morphology of the acid-hydrolyzed nanocellulose product was obtained. Width 365 
and particle size measurements of the purported bamboo nanocellulose confirmed that the products 366 
were in the nanometer range. DLS analysis revealed that the acid-hydrolyzed chemically treated 367 
kawayan kiling pulp were smaller in size but had longer average widths as shown by FIB-SEM. 368 

 369 
The presence of Si impurities was noted in the mechanically-ground nanocellulose. The 370 
nanocellulose from both treatments possess the cellulose backbone, although lignin was retained 371 
in mechanically-treated pulp even after several colloider passes. The acid hydrolyzed 372 
nanocellulose from chemically-treated pulp had a higher degree of crystallinity than the 373 
nanocellulose from the pulp subjected to mechanical treatment. In future works, B. vulgaris pulp 374 
that will be mechanically treated may require bleaching to further remove residual lignin and thus 375 
improve acid hydrolysis.  376 
 377 
Potential applications of B. vulgaris nanocellulose fibrils would be as reinforcements for 378 
composites while the cellulose nanocrystals may find application as nanosensors for biomedical 379 
purposes or additives for food-grade packaging. 380 

2 theta (2θ, o)  

18 o 

In
te

ns
ity

 (a
.u

.)  

21 o 23 o 

I002 

Iam 

b 

Figure 3. X-ray diffraction spectra of Bambusa vulgaris nanocellulose products from (a) combined 
bleaching and alkali digestion and (b) pulp subjected to grinding in a friction grinder supermass 

colloider. 



9            Philippine e-Journal for Applied Research and Development 
          Website: pejard.slu.edu.ph                 ISSN 2449-3694 (Online) 

 

Philippine e-Journal for Applied Research and Development  12(2022), 1-11

residual lignin. In comparison, cellulose 
nanocrystals prepared by sulfuric acid hydrolysis 
of commercial bamboo pulp had a 71.98% 
crystallinity (Yu et al. 2012) while a recent study 
reported a 68.53% crystallinity for nanocellulose 
extracted from isolated bamboo parenchyma 
using deep eutectic solvent (Gu et al. 2021).  

Conclusion

 The study compared the nanocellulose from 
the kraft pulp derived from kawayan kiling 
culms subjected to two different pretreatment 
methods. FIB-FESEM analysis showed 
crystal-like structures of chemically treated 
acid-hydrolyzed nanocellulose while for the 
mechanically treated pulp, a fibrillar morphology 
of the acid-hydrolyzed nanocellulose product was 
obtained. Width and particle size measurements 
of the purported bamboo nanocellulose confirmed 
that the products were in the nanometer range. 
DLS analysis revealed that the acid-hydrolyzed 
chemically treated kawayan kiling pulp were 
smaller in size but had longer average widths as 
shown by FIB-SEM.
 The presence of Si impurities was noted in 
the mechanically-ground nanocellulose. The 
nanocellulose from both treatments possess 
the cellulose backbone, although lignin was 
retained in mechanically-treated pulp even after 
several colloider passes. The acid hydrolyzed 
nanocellulose from chemically-treated pulp 
had a higher degree of crystallinity than 
the nanocellulose from the pulp subjected to 
mechanical treatment. In future works, B. 
vulgaris pulp that will be mechanically treated 
may require bleaching to further remove residual 
lignin and thus improve acid hydrolysis. 
 Potential applications of B. vulgaris 
nanocellulose fibrils would be as reinforcements 
for composites while the cellulose nanocrystals 
may find application as nanosensors for 
biomedical purposes or additives for food-grade 
packaging.
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